Quantifying Susceptibility of CD4+ Stem Memory T-Cells to Infection by Laboratory Adapted and Clinical HIV-1 Strains
نویسندگان
چکیده
CD4+ T cells are principal targets for human immunodeficiency virus type 1 (HIV-1) infection. CD4+ T cell subsets are heterogeneous cell populations, divided by functional and phenotypic differences into naïve and memory T cells. The memory CD4+ T cells are further segregated into central, effector and transitional memory cell subsets by functional, phenotypic and homeostatic characteristics. Defining the distribution of HIV-1 infection in different T cell subsets is important, as this can play a role in determining the size and composition of the viral reservoir. Both central memory and transitional memory CD4+ T cells have been described as long-lived viral reservoirs for HIV. Recently, the newly described stem memory T cell subset has also been implicated as a long-lived HIV reservoir. Using green fluorescent protein (GFP) reporter strains of HIV-1 and multi parameter flow cytometry, we developed an assay to simultaneously quantify the susceptibility of stem memory (TSCM), central memory, effector memory, transitional memory and naïve CD4+ T cell subsets, to HIV-1 infection in vitro. We show that TSCM are susceptible to infection with laboratory adapted and clinical HIV-1 strains. Our system facilitates the quantitation of HIV-1 infection in alternative T cell subsets by CCR5- and CXCR4-using viruses across different HIV-1 subtypes, and will be useful for studies of HIV-1 pathogenesis and viral reservoirs.
منابع مشابه
Evaluation of clinical course and laboratory findings in HIV/HTLV-1 co-infection compare with HIV mono infection
Background: In the last 10 years, co-infection of human immunodeficiency virus/human T-cell leukemia virus-1 (HIV/HTLV-1) has emerged as a worldwide health problem. These viruses has the same route to infect human but different effects on CD4 positive T-cells. There was controversial results about the influence of co-infection HIV/HTLV-1 pathogenesis. This study compared clinical course and lab...
متن کاملNumerical analysis of fractional order model of HIV-1 infection of CD4+ T-cells
In this article, we present a fractional order HIV-1 infection model of CD4+ T-cell. We analyze the effect of the changing the average number of the viral particle N with initial conditions of the presented model. The Laplace Adomian decomposition method is applying to check the analytical solution of the problem. We obtain the solutions of the fractional order HIV-1 model in the form of infini...
متن کاملHuman CD34(+) cells express CXCR4 and its ligand stromal cell-derived factor-1. Implications for infection by T-cell tropic human immunodeficiency virus.
Human CD34(+) hematopoietic progenitor cells obtained from bone marrow (BM), umbilical cord blood (UCB), and mobilized peripheral blood (MPB) were purified and investigated for the expression of the chemokine receptor CXCR4 and its ligand, stromal cell-derived factor-1 (SDF-1). CXCR4 was found present on the cell surface of all CD34(+) cells, although it was expressed at lower density on MPB wi...
متن کاملA nonstandard finite difference scheme for solving fractional-order model of HIV-1 infection of CD4^{+} t-cells
In this paper, we introduce fractional-order into a model of HIV-1 infection of CD4^+ T--cells. We study the effect of the changing the average number of viral particles $N$ with different sets of initial conditions on the dynamics of the presented model. The nonstandard finite difference (NSFD) scheme is implemented to study the dynamic behaviors in the fractional--order HIV-1 ...
متن کاملThe Cortical Actin Determines Different Susceptibility of Naïve and Memory CD4+ T Cells to HIV-1 Cell-to-Cell Transmission and Infection
Memory CD4+ T cells are preferentially infected by HIV-1 compared to naïve cells. HIV-1 fusion and entry is a dynamic process in which the cytoskeleton plays an important role by allowing virion internalization and uncoating. Here, we evaluate the role of the cortical actin in cell-to-cell transfer of virus antigens and infection of target CD4+ T cells. Using different actin remodeling compound...
متن کامل